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Abstract 
 

In modern computer architecture, many computing 

devices are equipped with heterogeneous processing 

units. Accordingly we can boost system performance in 

many applications. We propose a methodology that 

models the execution time of tasks running on 

heterogeneous processing units, CPU and GPU, and 

predicts which computing unit will execute each task 

faster. By adopting our model, tasks can be allocated to 

appropriate units dynamically during run-time. Given 

the trend of integrating heterogeneous computing units 

into systems, our methodology provides an effective 

means to accelerate applications running on them. 
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1. Introduction 
 

Recently, the number of computing devices that have 

heterogeneous computing units either at chip or board 

level is rapidly increasing. Not only desktop computers 

or workstations have powerful GPU cards inside, but 

even embedded systems such as smartphones and smart 

TVs contain both CPU and GPU these days. Given this 

trend, we clearly need for utilizing heterogeneous 

computing cores. 

When we assign a task to either CPU or GPU, we 

choose the one that can process the task faster. In this 

regard, it is critical to determine which processor is the 

right processor for each task. In general, it is expected 

that GPU is more appropriate for applications with data 

level parallelism. However, depending on the 

characteristics of the given input data and the 

parallelization overhead, the winner may vary, making 

the prediction challenging. [1] For instance, a major 

bottleneck in GPU-based parallelization turns out to be 

the overhead coming from the data transfers between the 

host and device memories. Various approaches [2,3] 

have been proposed to reduce this overhead, thus 

expanding the horizon for GPU-based parallelization. 

In this paper, we propose a methodology to construct 

the execution-time model of each processing unit, which 

plays a crucial role in selecting the right processing units 

for different tasks. Based on our method, we can further 

make the decision on which processing unit to handle 

them in runtime. Note that the proposed methodology is 

generally applicable. 
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Figure 1. Normalized execution time of square-matrix 

multiplication on GPU to that of MCCPU. The 

Problem size is defined as the numbers of rows in the 

input matrix. 

 

2. Motivation 
 

Many programmers would expect that the execution 

of a task on GPU will run faster than on CPU if the task 

has sufficient data-level parallelism. However, it is 

normally difficult to quantify how much data-level 

parallelism is sufficient for GPU execution. In order to 

investigate this issue, we perform matrix multiplications 

for various sizes of square matrices on both CPU and 

GPU. The result is shown in Figure 1 by normalizing the 

execution time on GPU to that on CPU. As expected, 

GPU shows better performance than CPU for large size 

matrix multiplications. However, CPU outperforms GPU 

when the matrix size is under 600 x 600 in this particular 

example. This is because the performance gain by the 

parallel execution on GPU is overwhelmed by overheads, 

such as memory transfers between the main memory and 

the GPU memory. In other words, the faster processing 

unit varies depending on the input size (eg., matrix size), 

even for the same problem (eg., matrix multiplication). 

This example clearly motivates the need to have a 

way to predict the execution time of each processing type 

taken to run a given workload of different sizes. To this 

end, we propose to use a formula to model the runtime of 

a task on CPU or GPU as the function of input size. 

Based on this model, given a program that consists of 

multiple tasks, we can assign each task to either CPU or 

GPU whichever can run it faster during run-time, 

achieving improved overall performance. 

- 563 -



ex
ec

u
ti

o
n

 t
im

e

> > > < < 

ex
ec

u
ti

o
n

 t
im

e

 
   (a)                            (b) 

Figure 2. Cross points and intervals: (a) two intervals 

with one point, (b) three intervals with two points 
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Figure 3. Algorithm for execution time modeling 

 

3. Execution Time Modeling 
 

In our approach, we want to know which processing 

unit runs faster for a given problem size, without actually 

executing the task every time. To this end, we need to 

build computational models that predict the runtime for a 

problem size. To build such a model, we use the idea of 

curve fitting. That is, we run some test cases of different 

problem sizes and measure their runtime for them. Each 

measurement gives a data point in the size-runtime space. 

We then carry out curve fitting of those points using a 

polynomial equation to get CPU and GPU models. 

By equaling the formulae of the two models, we 

obtain solutions indicating cross points (problem sizes 

for which CPU and GPU take identical time to process). 

Such cross points define intervals in the problem-size 

space, as shown in Figure 2. In each interval, either CPU 

or GPU runs faster than the other one. 

More detailed algorithm is shown in Figure 3. The 

input consists of set S={s1,s2,…}, parameter n, CPU and 

GPU task codes. Element si∈S represents the size of an 

input data set, and n corresponds to the order of 

polynomial to build runtime models. The minimum and 

maximum in S are denoted by Smin and Smax, respectively 

and the problem size with execution time data points for 

CPU and GPU are denoted by DC and DG respectively. 

Based on the data points produced in profilation step, 

we constructs empirical models of running time. The 

independent variable of this model is the problem size s, 

and the response variable is the running time t. We 

employ the polynomial curve fitting for model 

construction (more sophisticated fitting methodology is 

also possible depending on the user's need in practice). 

For instance, the model for CPU runtime tC(s) is given by 

tC(s) = ansn + an-1sn-1 + … + a0, where n is the polynomial 

order, and a’s are the coefficients of the polynomial 

determined in least-square sense from DC. The model for 

GPU runtime tG(s) is similarly constructed from DG. 
After building the runtime models, we tests the 

goodness of each model in terms of R2 or the coefficient 

of determination [4]. As R2 approaches 1 more closely, 

the model fits the data better. If R2 is lower than a user-

specified threshold, we increases the order n and tries to 

fit the data again with the higher-order polynomial. This 

process is repeated until R2 surpasses the threshold. 

The next step is to find cross points using the models 

of runtime. To this end, we set tC(s) = tG(s) and find the 

solution(s) of this equation numerically. In order for a 

solution to be valid, it should be a positive real number, 

and its range should be between Smin and Smax. If its range 

is not satisfied, then we include it in S (the set of 

problem sizes) and go back to profilation step to expand 

the search range. For some tasks, no scross would be found 

which means either CPU or GPU is always faster. 

 

4. Experiment 
 

We conduct our experiments on a Windows machine 

equipped with a 3.3GHz Intel i5 2500 processor, and 

Geforce GTX 260 graphics card. We used 7 benchmarks 

shown in Table 1. BF, MM are from NVIDIA CUDA 

SDK [5], and the others are from RODINIA benchmark 

suite [6]. 
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Table 1. Benchmark Description 

Name Domain 

Box Filter (BF) Image processing 

Matrix Multiplication (MM) Mathematics 

Breadth First Search (BFS) Graph algorithm 

Hot Spot (HS) Physics simulation 

Needleman-Wunsch (NW) Bioinformatics 

Path Finder (PF) Grid traversal 

Speckle Reducing Anisotropic 

Diffusion (SRAD) 
Image processing 

 

Table 2. Modeling analysis results 

Benchmark scross Error Perf. Loss 

BF 4,726k 1.38% 0.22% 

BFS 732k 1.78% 0.27% 

HS GPU wins N/A N/A 

MM 601k 6.49% 2.89% 

NW 4,532k 5.69% 2.17% 

PF 1,181k 1.24% 0.37% 

SRAD GPU wins N/A N/A 

 

We measured the accuracy of the execution time 

model and the result is shown in Table 2. We also 

measure the true values of scross for each benchmark in 

order to assess the estimation error defined by 

Error = (1 – estimated scross / true scross) × 100 (%) 

For HS and SRAD, using GPU always gives the better 

result, and thus no scross is found. For the other 

benchmarks, the better processing unit varies depending 

on the problem size. The estimation error defined above 

is kept reasonable in all cases. Also, such inaccuracy in 

modeling should incur only marginal performance 

degradation, since it is hard to distinguish which is better 

between CPU and GPU near scross. 

We conjecture that the error is mainly due to the 

variance of the execution time induced by erratic 

memory accesses. Nevertheless, such inaccuracy in 

modeling should incur only marginal performance 

degradation, since it is hard to distinguish which is better 

between MCCPU and GPU near scross. In practice, for the 

MM benchmark that shows the largest modeling error 

(6.49%), the performance degradation by using the 

estimated scross is merely 2.89%. 

For the benchmarks we test, second- or third-order 

polynomials are sufficient for modeling, and the number 

of iterations for finding scross remains small. For real 

workloads with similar execution-time versus faster-

processing-unit patterns, the modeling overhead would 

remain practical. 

 

5. Conclusion 
 

We have described a methodology for using CPU and 

GPU in order to reduce the running time of workloads. 

This method is based on modeling the execution time of 

CPU and GPU for tasks and make tasks dynamically 

allocable to either CPU or GPU, whichever is faster for 

each task. 

The proposed execution-time modeling is simple and 

accurate enough for selecting the faster processing unit 

for tasks. According to our experiments with seven 

public benchmarks, the modeling error was merely 1.24 

~ 6.49 % (3.31% on average) for finding a cross point (a 

problem size at which the execution time of CPU and 

GPU are the same) with only 0.22 ~ 2.89% (1.18% on 

average) of the execution time less near the cross points. 
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