
Execution Time Modeling for Heterogeneous Computing System

Hyeokjun Seo1,3, Eui-Young Chung1,4, and Sungroh Yoon2,5
1Dept. of Electrical and Electronic Engr., Yonsei University, Seoul, Korea

2Dept. of Electrical and Computer Engr., Seoul National University, Seoul, Korea
3jjsky7@dtl.yonsei.ac.kr, 4eychung@yonsei.ac.kr, 5sryoon@snu.ac.kr

Abstract

In modern computer architecture, many computing

devices are equipped with heterogeneous processing

units. Accordingly we can boost system performance in

many applications. We propose a methodology that

models the execution time of tasks running on

heterogeneous processing units, CPU and GPU, and

predicts which computing unit will execute each task

faster. By adopting our model, tasks can be allocated to

appropriate units dynamically during run-time. Given

the trend of integrating heterogeneous computing units

into systems, our methodology provides an effective

means to accelerate applications running on them.

Keywords: heterogeneous computing, modeling

1. Introduction

Recently, the number of computing devices that have

heterogeneous computing units either at chip or board

level is rapidly increasing. Not only desktop computers

or workstations have powerful GPU cards inside, but

even embedded systems such as smartphones and smart

TVs contain both CPU and GPU these days. Given this

trend, we clearly need for utilizing heterogeneous

computing cores.

When we assign a task to either CPU or GPU, we

choose the one that can process the task faster. In this

regard, it is critical to determine which processor is the

right processor for each task. In general, it is expected

that GPU is more appropriate for applications with data

level parallelism. However, depending on the

characteristics of the given input data and the

parallelization overhead, the winner may vary, making

the prediction challenging. [1] For instance, a major

bottleneck in GPU-based parallelization turns out to be

the overhead coming from the data transfers between the

host and device memories. Various approaches [2,3]

have been proposed to reduce this overhead, thus

expanding the horizon for GPU-based parallelization.

In this paper, we propose a methodology to construct

the execution-time model of each processing unit, which

plays a crucial role in selecting the right processing units

for different tasks. Based on our method, we can further

make the decision on which processing unit to handle

them in runtime. Note that the proposed methodology is

generally applicable.

0

1

2

3

4

5

6

7

100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

 T
im

e

Problem Size

CPU

GPU

Figure 1. Normalized execution time of square-matrix

multiplication on GPU to that of MCCPU. The

Problem size is defined as the numbers of rows in the

input matrix.

2. Motivation

Many programmers would expect that the execution

of a task on GPU will run faster than on CPU if the task

has sufficient data-level parallelism. However, it is

normally difficult to quantify how much data-level

parallelism is sufficient for GPU execution. In order to

investigate this issue, we perform matrix multiplications

for various sizes of square matrices on both CPU and

GPU. The result is shown in Figure 1 by normalizing the

execution time on GPU to that on CPU. As expected,

GPU shows better performance than CPU for large size

matrix multiplications. However, CPU outperforms GPU

when the matrix size is under 600 x 600 in this particular

example. This is because the performance gain by the

parallel execution on GPU is overwhelmed by overheads,

such as memory transfers between the main memory and

the GPU memory. In other words, the faster processing

unit varies depending on the input size (eg., matrix size),

even for the same problem (eg., matrix multiplication).

This example clearly motivates the need to have a

way to predict the execution time of each processing type

taken to run a given workload of different sizes. To this

end, we propose to use a formula to model the runtime of

a task on CPU or GPU as the function of input size.

Based on this model, given a program that consists of

multiple tasks, we can assign each task to either CPU or

GPU whichever can run it faster during run-time,

achieving improved overall performance.

- 563 -

ex
ec

u
ti

o
n

 t
im

e

> > > < <

ex
ec

u
ti

o
n

 t
im

e

 (a) (b)

Figure 2. Cross points and intervals: (a) two intervals

with one point, (b) three intervals with two points

Model Generation

Range Adjustment

Profilation

Initialization
, ,

Model Verification

Input:

CPU & GPU task codes

Start

“CPU

wins”

“GPU

wins”

Output

Range Verification
,

Figure 3. Algorithm for execution time modeling

3. Execution Time Modeling

In our approach, we want to know which processing

unit runs faster for a given problem size, without actually

executing the task every time. To this end, we need to

build computational models that predict the runtime for a

problem size. To build such a model, we use the idea of

curve fitting. That is, we run some test cases of different

problem sizes and measure their runtime for them. Each

measurement gives a data point in the size-runtime space.

We then carry out curve fitting of those points using a

polynomial equation to get CPU and GPU models.

By equaling the formulae of the two models, we

obtain solutions indicating cross points (problem sizes

for which CPU and GPU take identical time to process).

Such cross points define intervals in the problem-size

space, as shown in Figure 2. In each interval, either CPU

or GPU runs faster than the other one.

More detailed algorithm is shown in Figure 3. The

input consists of set S={s1,s2,…}, parameter n, CPU and

GPU task codes. Element si∈S represents the size of an

input data set, and n corresponds to the order of

polynomial to build runtime models. The minimum and

maximum in S are denoted by Smin and Smax, respectively

and the problem size with execution time data points for

CPU and GPU are denoted by DC and DG respectively.

Based on the data points produced in profilation step,

we constructs empirical models of running time. The

independent variable of this model is the problem size s,

and the response variable is the running time t. We

employ the polynomial curve fitting for model

construction (more sophisticated fitting methodology is

also possible depending on the user's need in practice).

For instance, the model for CPU runtime tC(s) is given by

tC(s) = ansn + an-1sn-1 + … + a0, where n is the polynomial

order, and a’s are the coefficients of the polynomial

determined in least-square sense from DC. The model for

GPU runtime tG(s) is similarly constructed from DG.
After building the runtime models, we tests the

goodness of each model in terms of R2 or the coefficient

of determination [4]. As R2 approaches 1 more closely,

the model fits the data better. If R2 is lower than a user-

specified threshold, we increases the order n and tries to

fit the data again with the higher-order polynomial. This

process is repeated until R2 surpasses the threshold.

The next step is to find cross points using the models

of runtime. To this end, we set tC(s) = tG(s) and find the

solution(s) of this equation numerically. In order for a

solution to be valid, it should be a positive real number,

and its range should be between Smin and Smax. If its range

is not satisfied, then we include it in S (the set of

problem sizes) and go back to profilation step to expand

the search range. For some tasks, no scross would be found

which means either CPU or GPU is always faster.

4. Experiment

We conduct our experiments on a Windows machine

equipped with a 3.3GHz Intel i5 2500 processor, and

Geforce GTX 260 graphics card. We used 7 benchmarks

shown in Table 1. BF, MM are from NVIDIA CUDA

SDK [5], and the others are from RODINIA benchmark

suite [6].

- 564 -

Table 1. Benchmark Description

Name Domain

Box Filter (BF) Image processing

Matrix Multiplication (MM) Mathematics

Breadth First Search (BFS) Graph algorithm

Hot Spot (HS) Physics simulation

Needleman-Wunsch (NW) Bioinformatics

Path Finder (PF) Grid traversal

Speckle Reducing Anisotropic

Diffusion (SRAD)
Image processing

Table 2. Modeling analysis results

Benchmark scross Error Perf. Loss

BF 4,726k 1.38% 0.22%

BFS 732k 1.78% 0.27%

HS GPU wins N/A N/A

MM 601k 6.49% 2.89%

NW 4,532k 5.69% 2.17%

PF 1,181k 1.24% 0.37%

SRAD GPU wins N/A N/A

We measured the accuracy of the execution time

model and the result is shown in Table 2. We also

measure the true values of scross for each benchmark in

order to assess the estimation error defined by

Error = (1 – estimated scross / true scross) × 100 (%)

For HS and SRAD, using GPU always gives the better

result, and thus no scross is found. For the other

benchmarks, the better processing unit varies depending

on the problem size. The estimation error defined above

is kept reasonable in all cases. Also, such inaccuracy in

modeling should incur only marginal performance

degradation, since it is hard to distinguish which is better

between CPU and GPU near scross.

We conjecture that the error is mainly due to the

variance of the execution time induced by erratic

memory accesses. Nevertheless, such inaccuracy in

modeling should incur only marginal performance

degradation, since it is hard to distinguish which is better

between MCCPU and GPU near scross. In practice, for the

MM benchmark that shows the largest modeling error

(6.49%), the performance degradation by using the

estimated scross is merely 2.89%.

For the benchmarks we test, second- or third-order

polynomials are sufficient for modeling, and the number

of iterations for finding scross remains small. For real

workloads with similar execution-time versus faster-

processing-unit patterns, the modeling overhead would

remain practical.

5. Conclusion

We have described a methodology for using CPU and

GPU in order to reduce the running time of workloads.

This method is based on modeling the execution time of

CPU and GPU for tasks and make tasks dynamically

allocable to either CPU or GPU, whichever is faster for

each task.

The proposed execution-time modeling is simple and

accurate enough for selecting the faster processing unit

for tasks. According to our experiments with seven

public benchmarks, the modeling error was merely 1.24

~ 6.49 % (3.31% on average) for finding a cross point (a

problem size at which the execution time of CPU and

GPU are the same) with only 0.22 ~ 2.89% (1.18% on

average) of the execution time less near the cross points.

Acknowledgment

This work was supported by Basic Science Research

Program through the National Research Foundation

(NRF) funded by the Ministry of Education

(2013R1A1A2011208) and by Samsung Electronics.

References

[1] V. W. Lee et al., “Debunking the 100X GPU vs. CPU

Myth: An Evaluation of Throughput Computing on CPU and

GPU,” in Proc. ISCA’10, pp. 451–460, 2010.

[2] S. Lee et al., "OpenMPC: Extended OpenMP for Efficient

Programming and Tuning on GPUs", Intl. Journal of

Computational Science and Engineering, pp 4-25, 2012.

[3] S. Grottel et al, “Optimized data transfer for time-

dependent, GPU-based glyphs,” in Proc. PacificVis’09, pp.

65–72, 2009.

[4] N. R. Draperet al., “Applied regression analysis,” Wiley

New York, vol. 3, 1966.

[5] Compute Unified Device Architecture (CUDA).

URL: http://developer.nvidia.com/cuda

[6] S. Che et al., “Rodinia: A benchmark suite for

heterogeneous computing,” in Proc. IISWC’09, pp. 44–54,

2009.

- 565 -

	ITC-CSCC 2015

	Main

	Information

	Contents
	Time Table
	Papers

	Special Session
	SS-1 Information and Communication Technologies
for Safe and Secure Life

	SS1-1

	SS1-2

	SS1-3

	SS1-4

	SS1-5

	SS1-6

	SS-2 Advances of Knowledge Extraction and Discovery
with Signal Processing and Machine Learning

	SS2-1

	SS2-2

	SS2-3

	SS2-4

	SS2-5

	SS-3 Energy Harvesting

	SS3-1

	SS3-2

	SS3-3

	SS3-4

	SS-4 5G Technologies

	SS4-1

	SS4-2

	SS4-3

	SS4-4

	SS-5 Image and Signal Processing and

High Voltage Systems 1
	SS5-1

	SS5-2

	SS5-3

	SS-6 Image Analysis & Understanding

	SS6-1

	SS6-2

	SS6-3

	SS6-4

	SS6-5

	SS-7 Image and Signal Processing and
High Voltage Systems 2

	SS7-1

	SS7-2

	SS7-3

	SS-8 Channel Coding and its Applications

	SS8-1

	SS8-2

	SS8-3

	SS8-4

	SS8-5

	SS8-6

	SS-9 Optical Networks and Visible Light
Communicationsg

	SS9-1

	SS9-2

	SS9-3

	SS9-4

	SS9-5

	SS-10 Algorithms in Image/Video-related
Consumer Products

	SS10-1

	SS10-2

	SS10-3

	SS10-4

	SS10-5

	SS-11 Wireless Sensor Networks and Protocols 1

	SS11-1

	SS11-2

	SS11-3

	SS11-4

	SS-12 Compressed Sensing

	SS12-1

	SS12-2

	SS12-3

	SS12-4

	SS12-5

	SS-13 Wireless Sensor Networks and Protocols 2

	SS13-1

	SS13-2

	SS13-3

	SS-14 Communication Signal Processing
and Control System 1

	SS14-1

	SS14-2

	SS14-3

	SS14-4

	SS14-5

	SS-15 Mathematical Systems Science
and its Applications 1

	SS15-1

	SS15-2

	SS15-3

	SS15-4

	SS-16 Semiconductor Devices and Integrated Circuits 1-
Advanced Memory Technologies

	SS16-1

	SS16-2

	SS16-3

	SS16-4

	SS-17 Communication Signal Processing
and Control System 2

	SS17-1

	SS17-2

	SS17-3

	SS-18
Mathematical Systems Scienceand its Applications 2- 263
	SS18-1

	SS18-2

	SS18-3

	SS-19
Semiconductor Devices and Integrated Circuits 2-Advanced Logic and Display Technologies
	SS19-1

	SS19-2

	SS19-3

	SS19-4

	Oral Session
	OS-1
Communications (Wireless Communication 1)
	OS1-1

	OS1-2

	OS1-3

	OS1-4

	OS1-5

	OS-2 Computers (Education)

	OS2-1

	OS2-2

	OS2-3

	OS2-4

	OS2-5

	OS-3
Computers (Scientific & Medical Imaging)
	OS3-1

	OS3-2

	OS3-3

	OS3-4

	OS-4
Circuit & System (VLSI 1)
	OS4-1

	OS4-2

	OS4-3

	OS4-4

	OS4-5

	OS-5
Circuit & System (Device)
	OS5-1

	OS5-2

	OS5-3

	OS5-4

	OS-6
Communications (Network, Management and QoS)
	OS6-1

	OS6-2

	OS6-3

	OS6-4

	OS-7
Computers (Computer System 1)
	OS7-1

	OS7-2

	OS7-3

	OS7-4

	OS-8
Computers (Video Coding & Compression)
	OS8-1

	OS8-2

	OS8-3

	OS8-4

	OS-9
Circuit & System (System 1)- 411
	OS9-1

	OS9-2

	OS9-3

	OS9-4

	OS9-5

	OS-10
Circuit & System (Analog 1)
	OS10-1

	OS10-2

	OS10-3

	OS10-4

	OS10-5

	OS-11
Communications(Communication Signal Processing)
	OS11-1

	OS11-2

	OS11-3

	OS11-4

	OS11-5

	OS-12
Communications(Wireless Communication 2)
	OS12-1

	OS12-2

	OS12-3

	OS12-4

	OS-13
Computers (Geometric Computing)
	OS13-1

	OS13-2

	OS13-3

	OS13-4

	OS-14
Computers(Robotics, Tracking & Navigation)
	OS14-1

	OS14-2

	OS14-3

	OS14-4

	OS14-5

	OS-15 Circuit & System (VLSI 2)

	OS15-1

	OS15-2

	OS15-3

	OS15-4

	OS15-5

	OS-16
Circuit & System (PMIC)
	OS16-1

	OS16-2

	OS16-3

	OS16-4

	OS-17
Communications(Wireless Communication 3)
	OS17-1

	OS17-2

	OS17-3

	OS17-4

	OS17-5

	OS-18
Computers (Computer System 2)
	OS18-1

	OS18-2

	OS18-3

	OS18-4

	OS18-5

	OS-19
Computers(Image Recognition & Detection)
	OS19-1

	OS19-2

	OS19-3

	OS19-4

	OS-20 Circuit & System (System 2)

	OS20-1

	OS20-2

	OS20-3

	OS20-4

	OS-21
Circuit & System (Analog 2)

	OS21-1

	OS21-2

	OS21-3

	OS21-4

	OS21-5

	OS-22
Computers(Data Mining/Machine Learning)
	OS22-1

	OS22-2

	OS22-3

	OS22-4

	OS22-5

	OS-23
Computers (Image Enhancement)
	OS23-1

	OS23-2

	OS23-3

	OS23-4

	OS23-5

	OS-24
Circuit & System (VLSI 3)
	OS24-1

	OS24-2

	OS24-3

	OS24-4

	OS24-5

	OS-25 Circuit & System (RF 1)

	OS25-1

	OS25-2

	OS25-3

	OS25-4

	OS-26
Communications(Wireless Communication 4)
	OS26-1

	OS26-2

	OS26-3

	OS26-4

	OS-27
Communications(Multi-antenna Transmission)
	OS27-1

	OS27-2

	OS27-3

	OS27-4

	OS27-5

	OS-28
Computers(Convergence/Visual Computing)
	OS28-1

	OS28-2

	OS28-3

	OS28-4

	OS-29
Circuit & System (System 3)
	OS29-1

	OS29-2

	OS29-3

	OS29-4

	OS29-5

	OS-30
Circuit & System (RF2)
	OS30-1

	OS30-2

	OS30-3

	OS30-4

	OS30-5

	Poster Session
	PS-1 Circuit & Systems 1

	PS1-1

	PS1-2

	PS1-3

	PS1-4

	PS1-5

	PS1-6

	PS1-7

	PS1-8

	PS1-9

	PS1-10

	PS1-11

	PS1-12

	PS1-13

	PS1-14

	PS1-15

	PS1-16

	PS1-17

	PS1-18

	PS1-19

	PS1-20

	PS1-21

	PS1-22

	PS1-23

	PS-2
Computer 1
	PS2-1

	PS2-2

	PS2-3

	PS2-4

	PS2-5

	PS2-6

	PS2-7

	PS2-8

	PS2-9

	PS2-10

	PS2-11

	PS2-12

	PS2-13

	PS2-14

	PS2-15

	PS2-16

	PS2-17

	PS2-18

	PS2-19

	PS2-20

	PS2-21

	PS-3
Computer 2
	PS3-1

	PS3-2

	PS3-3

	PS3-4

	PS3-5

	PS3-6

	PS3-7

	PS3-8

	PS3-9

	PS3-10

	PS3-11

	PS3-12

	PS3-13

	PS3-14

	PS3-15

	PS3-16

	PS-4
Communications
	PS4-1

	PS4-2

	PS4-3

	PS4-4

	PS4-5

	PS4-6

	PS4-7

	PS4-8

	PS4-9

	PS4-10

	PS4-11

	PS4-12

	PS4-13

	PS4-14

	PS4-15

	PS4-16

	PS4-17

	PS4-18

	PS4-19

	PS4-20

	PS4-21

	PS4-22

	PS4-23

	PS-5
Circuit & Systems 2
	PS5-1

	PS5-2

	PS5-3

	PS5-4

	PS5-5

	PS5-6

	PS5-7

	PS5-8

	PS5-9

	PS5-10

	PS5-11

	PS5-12

	PS5-13

	PS5-14

	PS5-15

	PS5-16

	PS5-17

	PS5-18

	PS5-19

	PS5-20

	PS5-21

	PS5-22

